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Analysis of Optical Waveguide Consisting of a
Square-Law Lenslike

to Circular
SHINNOSUKE SAWA, MEMBER, IEEE,

Abstract—Propagation bebavior of light beams along sinusoidal and

serpentine bends as well as circular bends and linearly tapered bends
of optical waveguides consisting of a square-law Ienslike medium is

investigated in detail, both theoretically and numerically, on the basis of

the approximate wave theory. A new design method of the circular bend

for removing the effects of the bend is proposed and numerical results are

presented. Tbe divergence phenomena of the beam trajectory in hotb the

sinusoidal and serpentine bends of the optical waveguide are discussed
in comparison with mode-conversion phenomena occurring in the circular
TEO ~ waveguide with the same bends. Several design conditions to

eliminate undulations of the beam trajectory sad/or tbe spot size which
would occur at a circnlar bend of tbe optical waveguide are also studied,
and interesting analogies to the design conditions proposed so far to

prevent mode-conversion losses at a circular bend of the TEO1 waveguide

are shown.

I. INTRODUCTION

I
T IS EXPECTED that dielectric waveguides operating

at optical frequencies will in the future constitute one

of the major transmission systems. In order to transmit a

light wave along a dielectric, it is necessary to achieve a

suitable variation of the permittivity (refractive index) in

the transverse cross section of the dielectric material [1].

The permittivity need not vary stepwise, but may decrease

continuously in inverse proportion to the square of the

distance from the center axis of the medium. A medium

with such a permittivity profile is equivalent to an ordinary

optical lens and hence is termed a (square-law) lenslike

medium, A typical example of a lenslike medium achieved

with a solid is SELFOC, which was developed jointly by
the Nippon Electric Co. and the Nippon Plate Glass Co. [2],

and one achieved with gas is the gas-lens beam waveguide

developed by Bell Telephone Laboratories [3].

Two analytical approaches are possible to clarify the

propagation behavior of light beams along Ienslike media.

One is the geometrical-optics approach [4]-[6] and the

other is the wave-optics approach [7]–[10]. In the first

approach, the light beam to be transmitted is treated as an

optical ray, while in the second approach it is treated as an

electromagnetic wave. The geometrical-optics approach is

sufficient to clarify only the behavior of the trajectory of

the beam center (the so-called beam trajectory). How-

ever, the wave-optics approach is necessary in order to
clarify the modal behavior of the light beam such as mode
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conversion and the propagation constant as well as the

response of the electromagnetic fields.

In the present paper, we investigate in detail the propaga-

tion behavior of light beams along bends of square-law

Ienslike media from the viewpoint of wave theory. General

expressions for the responses of electromagnetic fields of

light beams along curved lenslike media are derived, follow-

ing the approximate wave theory previously described [8],

[10~-[12]. The results are applied to a sinusoidal bend,

a serpentine bend due to the weight of the guiding system

itself, a circular bend and a linearly tapered bend, and the

propagation behavior of light beams is studied in detail

theoretically and numerically, compared with the results

obtained so far from the viewpoint of ray theory [4]--[6].

A new design method of the circular bend for removing

the effects of the bend is proposed, which makes it possible

to connect the circularly bent section to the straight section

without off-setting and tilting the center axis of the bend,

unlike the previous methods [5], [9]. Numerical results for

this design method are also presented. Further, the diverg-

ence phenomena of the beam trajectory occurring in the

sinusoidal bend and the serpentine bend [5], [6] and the

design conditions for the circular bend of the optical wave-

guide with a square-law lenslike medium [5], [9], [12],

[20] are discussed in comparison with the millimeter-wave

transmission system using circular TEOI waveguides [13]-

[19], and as a result various analogies between the two

guiding systems are shown.

For simplicity, two-dimensional lenslike media are used
and the analysis is limited to the paraxial beam approxima-,

tions throughout the paper.

II. GENERAL EXPRESSIONS FOR THE RESPONSES OF

ELECTROMAGNETIC FIELDS OF LIGHT BEAMS ALONG

CURVED LENSLIKE MEDIA

Let us consider a two-dimensional model of the bend

section of a square-law lenslike medium as shown in Fig. 1.

We assume that the radius of curvature of the bend varies

slowly as a function of z. Let the permittivity of the medium

be expressed as

& = .s.[1 – gz(r – R)2] (1)

where eCrepresents the constant permittivit y on the center

axis of the medium r = R (on-axis permittivity), and g is a

focusing parameter specifying the rate of change of permit-

tivity in the transverse x direction. R denotes the ri~dhs
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Fig. 1. Curved section of the optical waveguide consisting of a

square-law lenslike medium.

with

k(o) = @&c (6)

where the primes indicate the differentiation with respect to z.

Let us expand the exponential terms exp [2&/R(z)] and

exp [HR(z)] – 1 in power series of ~/R(z) and omit the

terms higher than third order by noticing that ~/R(z) <<1

when x/R(z) << 1 (x = r - R) since

‘=R(z)’n(l‘a
x’ + ,x’ x’ +

. x—— ——— “...

2R(z) 3R2(z) 4R3(z)
(7)

Further, we discard the terms with R’(z), R“(z), and R“(z)

in (5), by assuming

~~ . IR’(z)I <<1 @ . IR’’(z)l <<1

R’(z)

of curvature of the bend, being a function of z or ~ and
a~ “ — << 1

R(z)
IR’(z)I <<1. (8)

represented as R(z) or R(#).

We also assume that the variations of the Permittivity As a result, we have the simplified wave equation as

e in the r and # (or z) directions are small en”ough to b; d’ v az v
——

neglected over a distance of a free-space wavelength Jo at’ + azz
+ k2(0)

of the light beam. Then, the scalar wave equation which

determines the responses of the electromagnetic field of the
[

“1+ -&-g’ {1’A Hp v=o. (9)
light beam is expressed approximately in polar coordinates g2R2(z)

(r,+) as
If we put

()la av-— — + + :: + @’v&c[l - g’(r – R)’] ~ = O V(&,z) = ~(~,z) exp [–jk(0)z](- U(x,z) exp [–jk(0)z])
r & r ar r 0$

(lo)
(2)

with the assumption
where sinusoidal time dependence of the fields with angular

frequency co is assumed, and v denotes the permeability ‘1(11ora’u~ <<2k(CI) ~ — I 1)<<2k(0) ~ (11)
of the medium. az2

By performing the transformation of variables from (r,@)

to (&z) as
and substitute (9) into (8), we see that the field-distribution

function ~ (<,z) must satisfy the paraxial wave equation

we can rewrite (2) as

a’v + a2v
s s [1

+ k2(0) exp —
R(z)

[ (2; 1)1t 2

. 1 – g2R2(z) exp — –1 v
R(z)

+ R’(z)

{
— 2(<

a2v– R(z)) —
+ av

R(z) a<dz z }

{}
+ R’(z) 2

~ (t – w)’&

[(

R’2(z) + R“(z)
+—

R’(z) )
~ (Hz))-~]~=0

(5)

32U

atjz
— – j2k(0) ~ – k2(0)

[

2.
(

2——
R(z)

<i-g’ l–_
}1

<2 0 = 0, (12)
g2R2(z)

For convenience, let us express the field-distribution

function D(&,O) of the input beam at z = O as

~(<,0) = exp -‘C _##}z - jk(0)A’(0)&]
[

“Hevr:(71 ’13)
where o(O), A(0), and A’(0) are constants independent of ~

and z, and He, (X) refers to the Hermite polynomial of

the vth order, defined as in [11, eq. (A2)].

Following the convenient method of analysis based on

approximate wave theory [10] -[12] and with the help of

the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) method

[21], we derive the field-distribution function ~(~,z),
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from which the field distribution function U(x,z) can be $’(z) = [6’(z) - R’(Z)d2(Z)/R2(Z)] {1 - d(Z)/~(Z)} “

obtained by approximating the variable 1 by the first two

terms of its expansion (7) as ~ ~ x – x2/[2R(z)]. The f(z) =
J

z Sh [g~{~(z) – ‘(q)}] d~,

result is given below. ;— —90 P(z) o R(q)Jp(q)

( w’ )
v/2

cos go6 + u(O) sin gotl + j ~ sin gotl

U(x,z) = pi/4(z) “
@)

(

w.’

)

(v+l)/2

cos gotJ + 24(0) sin gotl – j — sin goO
02(0)

. exp _ {x - a(z)}’
[ 2s’(2) “k(o)’’(z) [1 -%)2X - 2&(z,f:(%:R(z,,’ “%

“[’(2)’’(2){1 - %(’ - %)) -a(o)’’(o’-~(llll

1-
iP(z) {x

X2
– d(z)~(l – a(z)/R(z)) – —

. Hey
2R(Z) )

J 1

(14)
w’

0(0) (COSgo~ + u(0) sin gof3)2 + ~ sinz go6
04(0)

where

&=&{l-%l-l-’k(0)”%(’-%)
(15)

{ %}-’ii(z) = A(z) 1 + (16)

with

j-(()) = d+) .; P(z)=ql --L,
90 g2R2(z)

p,(o) = d!? ..,’ a’(o) = q .; 24(Z)= 23G,
z z

J

6(Z) -6 = z p(~) dq, z a(~) dq,
+(z) = J’. ~~

o

[
62(0) 1 + u(0)u(z)) sin go(l + (u(z) – 240)) Ws 900}

1 w~ ‘(
cos goO – u(z) sin gotl – j —

—=&@ 1— (17)
62(Z) fJ2(o) W2

cos goO + u(0) sin go6’ – j ~ sin goO
d(o)

A(z) = p- 1i2(Z)
[(

.0s go6 + ~ sin goO) J90=9 L&----, w.= —-.

ig:k(0) ’20)

“’(o){’ -%1-’‘: If we restrict our attention to a mild bend whose curvature

“ F“ol -%} -f’(o)]‘ingool‘f(z)
is small enough to satisfy 6(z)/R(z) << 1 and d’(z)/

[gOR(z)] <<1 together with x/n(z) <<1, we can adequately
approximate l/s2(z) and d(z) in the previous expressions

(18) as

[
‘2(0) 1 + u(z)u(0)) sin goO + (u(z) –

1 w: ‘(
cos go6 – u(z) sin go6 – j —

~ p(z)
u(o)) Cos goo)

1—_ —. — (21)
S2(Z) S2(0) w’

cos goO + u(0) sin goO – j * sin god
s (o)

7%)=4YJ1-%1“k(o%w-%) ‘(z)=p-1’2(z)[t0sg0’+%singOe)’(0)
(19)

(

+ a’(o) – j-’(o)

where )1
sin go6 + f(z). (22)

90
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For this case, (14) may be regarded approximately as a

Hermite–Gaussian field distribution in the transverse x

direction, representing the response of the light beam whose

input condition is given by

[
U(X,O) = exp –

{x - 6(0)}’

2s’(0)
– jk(0)&(O)x 1

[1
. He x – a(o)

v (23)
s(o)

where 1/s2(0) is an input wavefront coefficient [11], and

6’(0) and 6(0) are the input slope and input displacement

of the beam center from the optic axis x = O.

111. PROPAGATION BEHAVIOR OF LIGHT BEAMS ALONG

CURVED LENSLIKE MEDIA

A. Sinusoidal Bend

Let us consider a sinusoidal bend as shown in Fig. 2,

in which the curvature 1/R(z) varies sinusoidally with z as

—=–sin %
1 1

()R(z) Rm p
(24)

where 1/R~ and p are constants, denoting the maximum

value of curvature and the period of the bend, respectively.

For simplicity, it is assumed that

1

()

sill’ 2TCZ— << 1.
g2R~2 P

(25)

Substituting (24) into (14)–(22) and taking the previous

assumption into consideration, we can derive the field-

distribution function U(x;z) of the light beam with the input

condition of (23) as

(

W2

)

v/2

cosgz+jy sin gz

U(x,z) =
s (o)

(

iv2

)

(,+1)/2 \

cosgz–j~ sin gz
s (o)

. exp _ {x - 8(Z))’_ ~.(o)d,(z)x

[ 2S2(Z)

~(o) ~(z)d’(z) - a(o)wl)q
2{

+j—

[d

“ He,
x — 5(2)

4

s(o) COS2gz + — sinz gz
S4(0) 1

s~z)=~ot:::i)
sin gz

——
2

sin gz

d(z) = 6(0) cos gz + afl)sin g.z + $(z)
9

where

(26)

(27)

(28)
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I , lens- like medium
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Fig. 2. Sinusoidal bend of the optical waveguide consisting of a
Ienslike medium.

1
2n.2 2i’c

g sin — – — sin gz
PP Ior p # ~ (29)

$(z) = gRJg2- – 4rc2/p2) ‘ 9

[

sin gz – gz cos gz
for p = ~ (30)

“2g2R~ ‘ 9

J’(z) = ; 6(Z) (31)

with

w = l/Jgk(o). (32)

From (27) the spot size of a Gaussian beam is calculated

as

1
w(z) =

Re’iz {1$s2(0)}

[(“;1+ -& +(1 .&)cos2gz)

+ ‘m(%lsin2gzl”2 (33)

The trajectory of the beam center (the beam trajectory) is

given by (28)-(30). By setting w(0) = w, d(0) = O, 6’(0) = O,

and R~ = m in the above results, we get the propagation

constant ~, for the normal modes in the straight section

as

B, = w – 9(V + +) (34)

with,v = 0,1,2,. “ . .

From (26)-(33), the following conclusions are derived,

regardless of the input conditions of the light beam.

1) When the period of the bend p is not equal to 2n/g,

the beam trajectory d(z) undulates about the center axis

of the medium; the light beam does not diverge from the

center axis and hence stable transmission can be realized.

2) When the bending period p is just equal to 2rc/g, the

beam trajectory deviates from the center axis of the medium,

undulating increasingly with the transmission distance; in

other words, the so-called divergence phenomenon of the

beam trajectory arises. As a result, the diffraction loss due

to the finiteness of the cross section of the medium for
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practical use increases without limit, and hence stable and

low-loss transmission becomes impossible.

These conclusions are in complete agreement with

those previously obtained by the ray-theory approach [5].
x0(z)

o

I I

B. Serpentine Bend

Next we consider a serpentine bend as shown in Fig. 3.

Such a bend would oeeur inevitably in the practical guiding

system supported or suspended with equal spacing L. The

center axis of the guiding system is bent along an elastic

curve caused by its own weight, which is given by the theory

of elasticity [14] as

/
‘lens-like medium

/
support support

Fig. 3. Serpentine bend of the optical waveguide consisting of a
lenslike medium.

‘o(z)=-K(32(1-22 (35)

with

K=~4
24eI

(36)

where W, e, and I are, respectively, the weight per unit

length, the moduhs of elasticity, and the moment of

inertia of the guiding system.

The curvature of the elastic curve (35) is computed as

–+H1-6(W9} ’37)
1

R(z) – -0.2+
(a)

where we have assumed

( )
dxo(z) 2 <<1 ~<<1 .

dz
(38)

0.02.

0-

-0.01 .

In the interval O s z s L, (37) may be expanded in the

Fourier series

1
g $1 ; Cos (y z) .

R(z) = –
(39)

Substituting (39) into (14)-(22), we have the field-

distribution function U(x,z) for this case. The result is

expressed by (26), in which 6(z) is replaced with

-0.07 1 NORMALIZED DISTANCE -;— —

6(z) = {d(O) - $(0)} cos gz + ‘N singz + $(z) (40)
(b)

9

where
Fig. 4. Normalized beam trajectories of the light beam along the

serpentine bend of the optical waveguide consisting of a lenslike
~edium. Input conditions of the light beam are assumed to be J(O) =
6(0) and c$’(0) = O. (a) For the case of L # 2m-z/g. (b) For the case

of L = 2nn/g.

In particular, for a light beam satisfying the input

conditionsI for L#~ (41a)

a(o) = 8(0) d’(o) = o (42)

we have

a(z) = $(Z). (43)
for L = 2@. (41b)

9
Therefore, for the case of L # 2nn/g, the beam trajectory

repeats over the support or suspension interval as shown in

–= -.. Fig. 4(a), while for the case of L = 2zn/g the trajectory
Equation (40) represents the trajectory of the beam center.

The s~ot size is rziven bv the same eauation as (33).
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deviates from the center axis of the medium, increasing

in amplitude of undulation as the light beam propagates,

as shown in Fig. 4(b).

Generally, from (40), (41a), and (41 b), we obtain the

following conclusions regardless of the input conditions.

1) When the support interval L is not equal to an integral

multiple of 2n/g [L # 2@g; n = 1,2,3, -”s ], the beam

trajectory undulates around the center axis of the medium;

in other words, the light beam does not diverge from the

center axis and hence stable transmission is obtained.

2) When L is just equal to an integral multiple of 2n/g

[L = 2nn/g; n = 1,2,3,.”” ], the divergence phenomenon

of the beam trajectory occurs; in other words, the light

beam fluctuates increasingly with the transmission distance,

deviating further from the center axis of the guiding system.

As a result, for this case, too, the diffraction loss increases

indefinitely and hence ‘low-loss transmission cannot be

possible. Here, it must be noted that in the case of the

sinusoidal bend the divergence phenomenon of the beam

trajectory occurs only when the bending period p k equal

to 2rc/g, as analyzed already; whereas, in the case of the

serpentine bend this phenomenon occurs not only when

the support interval L is equal to 2z/g but also when L is an

integral multiple of 2n/g, because the curvature of the elastic

curve of (39) contains spatial harmonics of the fundamental

period L.

C. Circular Bend

Consider a circular bend of the Ienslike medium as shown

in Fig. 5. For this case, the curvature of the center axis

of the medium is given as

1 1
– constant.

z=Fc–
(44)

Substitute (44) into (14)-(22), and we have the field-

distribution function U(x,z). The result is represented by

(26) in which l/s2(z), d(z), 6’(z), g, and w are replaced,

respectively, with l/sc2(z), d=(z), dC’(z), ~, and w, given

below.

(46)

at’(z) = ; a=(z),
‘= ’(’-7a”2

—.‘c=d(o)
(47)

Equation (46) represents the beam trajectory, and the spot

size WC(Z) and the propagation constant /3,(’) for the

normal modes in the circular bend are obtained from (33)

and (34), respectively, by replacing w and g in those

expressions with the WC and j of (47).

I
x

medinm
o A.

r

o’

(lxl=lr-Rl <<R)

Fig. 5. Circular bend of the optical waveguide consisting of a Ienslike
medium.

If the input conditions of the light beam are chosen as

d(o) = ~ (Y(o) = o, ~ = ~ (48)
~2RC ‘ s’(o) w:

the beam trajectory and the spot size are simplified, res-

pectively, to

C5c(z)= ~ WC(2) = Wc.

@2RC
(49)

For the input conditions of (48), the light beam propagates

along the bend without the fluctuations of the spot size

and the beam trajectory, keeping the input spot size WC

(the characteristic spot size of the circular bend) and the

input displacement of the beam center 1/(j2RC). In this sense,

(48) may be said as the matched input conditions for the

circular bend.

If we assume 2/(g2Rc2) << 1 and neglect this term in the

expressions (43)–(49), these expressions are reduced to the

previous results obtained by the ray theory [5].

D. Linearly Tapered Bend

We consider a linearly tapered bend as shown in Fig. 6,

in which the curvature of the center axis of the medium

increases linearly with distance z from zero on the straight

section to a maximum value 1/R1 as

(50)

where 1 is the length measured along the center axis of the
medium x = O.

Substituting (50) into (14)–(22), we obtain the field-

distribution function U(x,z). The main parameters for this

case, which govern the response of the light beam, are given

as follows:

( 2Z2

)

1/2

p(z)= l–—
g2Rt212

—z
u(z)= ~ ‘2 (1- * ‘3’2

gRtl g2R,212 )

[(

2Z2 1/2

e(z)=; z l–—
)

45 z

( )1
gRtlsin.1 _+—

g2R,212 ./5 gR+l
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lens-like medium

I
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---

Xo R(0)= 00 o’
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---------
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Ii

0
dmtance Z*

(b) Curvature

(a) Linearly tapered bend

Fig. 6. Linearly tapered bend of the optical waveguide consisting of a
Ienslike medium.

(51)

( 2Z2

)

–1/4

6(Z)= l–—
g2R,212

{
“ d(o) Cos go(z) +

(Y(O)
— sin gO(z)

9 }

(
+~ I-*-”z

g2R,l g2R,212 )

“((

Z2

)

–1/2

zl— —

}

– ~ sin gO(z) . (52)
g2R,212 9

Equation (52) gives the beam trajectory, and the spot size

of a Gaussian beam w(z) is calculated as

( 2Z2

)

-1/4

w(z)= l–—
{–1

Re-1/2 1

g2R,212 s?(o)

“[{
;1+

%+(1 -%$)”c0s2go(z0

+ 1m{%}sin2ge(zO”2
(53)

Fig. 7(a) and (b) illustrates the calculated beam trajectory

normalized by (~~ g)- 1 in Fig. 7(a) and 8(0) in Fig. 7(b),,-
as a function of the normalized distance z/(gR,l/~2),

assuming that x/~/(g2RJ) = 0.01. In Fig. 7(a) the input

conditions of the light beam are taken to be c$(0) = 6’(0) =
O, while in Fig. 7(b) 6(0) = l/(g3R,l) and 6’(0) = O. Fig. 8

shows the calculated spot sizes normalized by the input

value w(0) as a function of the normalized distance

z/(gRtl/@, in which the parameters are taken as

~~/(g2R,l) = 0.01, and w(0) = w/2, w, and 2w.
From these figures, it is seen that the light beam wanders

away from the center axis of the medium as it propagates,

.

I

0.7

0.6

: [1

* .0.01

0.5 6(0)=$’(0)=o

0.4

0.3

0.2

0.1

0

A 01 0.2 0.3 0.4 0.5

NO RMALIZEO DISTANCE ~Z “—

(a)

0 01 02 0.3 0.4 CL5

NORMALIZED DISTANCE *Z .+

(b)

Fig. 7. Normalized beam trajectories of the light beam along the
linearly tapered bend of the optical waveguide consisting of a lemlike
medium. (a) For the case of 6(0) = J’(O) = O. (b) For the case of
d(0) # O and J’(O) = O.
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I

7 1

I 6

0 ~,
0.1 0.45 0.5 0.55 0.58 0.85 0.9 0.95 0.98

NORMALIZE OISTANCE /Tz >
gR~l

Fig. 8. Normalized spot sizes of a Gaussian beam along the linearly tapered bend of the optical waveguide consisting
of a lenslike medium.

-.
\

I
straight

section [

t

o’ “-\

Fig. 9. Circular-bend section directly connected to the straight
sections I and II without off-setting and tilting the center axis of
the waveguide.

with slight undulations of the beam trajectory as well as

fluctuations of the spot size, increasing the amplitudes and

periods of the undulations and fluctuations. Especially,
when the input wavefront coefficient 1/s2(0) is taken as

1 1—. .
S2(0) W2

the spot size w(z) becomes

( 2Z2

)

–1/4

w(z) =wl– —

g2Rt212

(54)

(55)

and as a result its fluctuations are perfectly removed.

Contrary to this, we cannot find any input conditions to

remove the undulations of the beam trajectory. If we

assume 2/(g2Rt2) << 1, and hence that the terms with

l/(g2&2) in expressions (51), (52) can be discarded, the beam

trajectory of (52) completely agrees with the result of the

previous analysis based on the ray theory [5].

IV. A DESIGN THEORY OF THE CIRCULAR BEND OF OPTICAL

WAVEGUIDES CONSISTING OF LENSLIKE MEDIA

A. Eflects of a Circular Bend

Suppose that a circular bend is inserted in an optical

waveguide consisting of a lenslike medium, as shown in

Fig. 9. The axis of this bend coincides with the axes of the

straight sections and the permittivity is distributed in the

straight sections I and II as

&Jx) = qo)(l – 9.2X2) (56)

and in the bend as
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&c(?’)= &c(Rc){l – gc2(r – R.)z} (57)

where R. is the radius of curvature satisfying Ir – RCI << EC,

and s.(O) and tC(Rc) represents the on-axis permittivities in

the straight and circularly bent sections, respectively. g, and

g, are the focusing parameters in the straight and bent

sections, respectively.

Let us assume a Hermite-Gaussian beam as given by

(23) at the entrance of the circular bend z = O. Then the

wavefront coefficient 1/.sz2(z) and the beam trajectory

62(z) of the light beam in the outgoing straight section II

are calculated from (45) and (46) as

1 1

[

W2
_ .— cos ~Cl cos g,z — % sin 8=1 sin g,z
S22(Z) S2(0) w,

S2(0)

(

w’
–j—

w.’
cos @.1sin g.z + ~ sin @cl cos g.z

w.’ )1

“[
W2 W2

cos /jC1cos g,z – ~ sin /7,1 sin g~z – j ~
w? S2(0)

“( W2

)1
–1

cos jCl sin g~z + ~ sin ~Cl cos g,z
w.

(58)

(82(Z) = a(o) – ~
/jc2RC)

“[
.

1
cos ~Cl cos g,z — Q sin gj.1 sin g,z

9s

+ d’(o)

–[
cos ~cl sin g~z + ~ sin L7C1cos g,z

9s 9. 1

Cos g,z
+— (59)

i7c2Rc

where

‘s=J&)’ “ = Jtickc) ‘

k,(0) = oiKs,(0), kc(llc) = oJp&c(Rc), (60)

Jjc. gc 1.-?.-.
gc2Rc2

(61)

From (58)-(61), we see that the effects of the circular bend

are divided into a primary part due to a curvature l/Rc

and a secondary part due to (1/RC)2.1

B. Design Methods for Removing the E#ects of a Circular

Bend

In order to eliminate the effects of the circular bend

clarified in the preceding section, we propose a new design

method of the circular bend. In this method, a mode

1 Equations (58)-(61) fmther include the effects of a bend due to
higher order terms in (1/R.)3,(1 /RF)4,.. . . However, under a Hermite-
Gaussian approximation and within the accuracy of the phase constant
adopted in this paper, it would be meaningless to take into considera-
tion corrections h@er than the third order.
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transducer is inserted between the straight section and the

circularly bent section, by which beam modes are converted

into normal modes in the circular bend.

Let us derive the design conditions of the mode trans-

ducer, according to the following examples.

1) Circular Bend of Lenslike Medium as a Mode Trans-

ducer:-T.et a g$cular bend be divided into three sections

0~, AB, and BC, as in Fig. 10, wherein the radii of curvature

are RI, RC, and RI, and the lengths are 11, 1=,And 11, re&

pectively. The permittivity in the sections 04 and 2?C

which play a role of mode transducer is given by

&l(r) = el(RJ{l – g12(r – RI)’} (62)

and that in the section A% is given by (57).

If the light beam is incident upon the bend off-axially

and obliquely as given by (23), the beam trajectory in the

outgoing straight section II is derived as

62(z) = (Kl sin ~Clc + K2 cos ~cl= + K3)

+

+

+

Cos g,(z – 211 – 1.)

~ (K1’ sin ~Clc + K2’ cos jclC + K,’)
9s

sin g~(z – 211 – 1=)

[( ()lti~-
6(0) Cos2j~l~ CosJclc – – — + +

20,91’

[(+6’(0) g.—— sin 2ijl 11 cos jCle
9s dl

(-

.

+ ‘~ cos’ ~111 – ~ sin’ ~111
9. 91 )

“ sin @cl=
)

“ Cos g.(z – 211 – 1,)

where
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x 1 /mode transducer
Tstraight section 1

Kz =

K3 =

K1’ =

Kz’ =

K3’ =

.

+

t ransducer

0; 11// Ill .Straiaht

Fig. 10. Proposed design method of the circular bend for eliminating the effects of the bend.

((1 1
—— —

)
Co$ jlll

@c2RC J12RI

~ (cos2 Jill – sin2 Jill)
}

( 1 ;1—. —

)

sin #ill

~lR1 @C2Rc

(64)

(65)

(66)

and flC is giyen by (61).

The first and second terms in (63) including KI,K2,K3

and K1 ‘, K2’,K3’ given by (64) and (65) are related to the

curvatures I/Rl and 1/Rc, the first-order effect in the bend.

The third and fourth terms in (63) are, as is clear from (61)

and (66), related to the curvatures squared (1 /Rl)2 and

(1/Rc)2, the second-order effect in the bend. For l?l ~ co,

Rc + m, and gl = g= = g,, (63) simplifies to

62(2’)= 6(0) cosg~.z + ‘~ singg. (67)
9s

Equation (67) would be obtained if O>, A;, and B~ were

all straight sections.

Equating (63) to (67) for any lC, 6(0), and d’(0), we have

KI=K2=K3=0

K1’ = K2’ = K3’ = () (68)

(69)

Equations (68) and (69) represent the conditions for remov-

ing the first-order and second-order effects of the bend,

respectively.
In order to remove the effect of the bend completely

up to the second order included in the spot size, we must

further require the matching conditions for the spot sizes

in the straight and circularly bent sections as

with

kl(R1) = co~fi). (71)
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From (64)-(66) and (68)–(71), we can determine 11, RI, TABLE I

91, and 9.. As a result, we obtain a design method as
DESIGN CONDITIONS FOR ELIMINATING THE EFFECTSOF THE CIRCULAR

BEND IN WHICH 2/(g.2R=2) <<1 ISASSUMED

/1 = (2N + 1)~ (N = 0,1,2,” “ “)
9s ‘

RI = 2RC &l(RI) = &c(RJ = e.(o)

(

1/2

g,=g, I+A
2g,2RC2 ) ‘c= 41 ‘h)’”

(72)

where we have assumed that 1=is arbitrary and R= # co.

The electromagnetic fields of the outgoing straight section

II derived as a result of the design method of (72) ag~e

with those ~hich would be obtained by assuming that OA,

AB, and BC are all straight (Ri = R= = m). This means

that the effect of the bend has been completely removed.

Moreover, the fields in the circularly bent section As

coincide with those in the straight section II, if the beam

trajectory 62(z) is replaced with d=(z) as given “by

(5C(z) = ~
(s(0)

+ 6(0) Cosg,z + — sin g,z. (73)
g,2RC 9s

The results are identical with the fields wlich would be

obtained by displacing the axis of the circular bend towards

the center of the curvature by l/(g,2Rc) [5], [9].

If the radius of curvature RC is large enough to satisfy

the condition

2
<< 1

g82Rc2
(74)

the design method of (72) is simplified to method (a) of

Table L In this case, the method requires that the length 11

must be equal to an odd multiple of n/g, and that the radius

of curvature RI be equal to 2RC, but the focusing param-

eters gl and g= may not vary from those of the straight

section.

2) Circular Bend of Tapered Lt?nslik~ Mediu~ as a Mode

Transducer: Let us replace sections OA and BC of Fig. 10

by tapered lenslike media with a raised-cosi~ taper [12].

We assume that the permittivity is given in OA as

[ 2t+l:T-RJ21.so~(r,z) = El(RI) 1 – got

(75)

and in B-C as

[[

~_acos7c(z-11-lc)2

11
.s~c(r,z) = .S1(R1) 1 – gOt2

l+a )

10 (r – R,)’ (76)

and also that in A= it is given by (57). In the expressions

—

(a)

(b)

(c)

Simplified Design Conditions

, , (2 N+I)x
1 — (N = 0,1 ,2-.---)

9s

1, . arbitrary , R,. arbltrary+m

9,=9. =9s

&(R)= &.( R.) = &,(0)

Rj= 2Rc

—

,,, (2 N+1)X
9, (N = 0,142 -----)

1. = arbitrary , R,=arbitrary t m

%= 9, / a= l/(2~R~)

&,(RI) = E.(R) = t.(o)

RI = R.
[

gc 3/2

l+(~) 1 —,,_2N7c
9$

(N= 1,2,3 -----)

1, . arbitrary , R, = arbitrary+ w

9s’ 9’, L,(R) ❑ E,(0)

(a) The circular bend of a lenslike medium as a mode transducer.
(b) The circular bend of a tapered lenslike medium as a mode

transducer.
(c) The linearly tapered bend of a lenslike medium as a mode

transducer.

(75) and (76), go, and a are independent of r and z ,and we

assume O c Ial K 1.

Suppose that an Hermite-Gaussian beam is incident

off-axially and obliquely and determine 11, a, got, and RI

by the same procedure as was done in the preceding sub-

section. Then we have the following design method:

~1 = w + W, (N = 0,1,2,. ““)
Jot

1 – a2 – g,2go,-2(1 – a2 – 2g,-2Rc-2)

a = [1 + {02 + g~got-z(l – 02 – 2g.-2Rc-’)2’/2-J2

got = 9s(1 + %.-2R1-2)1’2

RI = RC{l + a3/2(1 – 2gC-2RC-2)3/4} (77)

with

;0, = 9; {u – 290,-2RC-Y2 + 1}, ~ = 9./9s

(78)

where we have assumed that El(RI) = ec(RC) = e~(0),

RI > R=, and lC is arbitrary.

If gC = g,, this method agrees with that proposed in [12]

to remove the undulations of the beam trajectory and the
spot size for a light beam incident onto the axis with the

input conditions 6(0) =’ 6’(0) = O, s(O) = w.. Here we

must note that by this design method, unlike the method

of (72), a lenslike medium having the same focusing
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paramete~ as in the straight section can be applied to the

section AB, even if the condition of (74) is not satisfied.

The fields in the straight section II derived as a result of

this meth~d a~ee with_those which would be obtained if

sections OA, AB, and BC were made straight with a length

‘C=’’’+zwkii$ ‘7’)
Thus we see that the effect of the bend has been removed

perfectly except for the phase shift due to the term

(L9J9.)J1 – 2/(gc2Rc2).

If the condition of (74) is satisfied, the design method of

(77) is reduced to method (b) of Table I.

3) Linearly Tapered Ben~ of LensJike Medium as a Mode

Transducer: Let sections OA and BC of Fig. 10 be replaced

by linearly tapered bends of the Ienslike medium as in-

vestigated in the preceding section. We assume the curvature

of the tapered bend in 0> as

1 z
(o<z <l,)

ROA(Z) = RC1l ‘
(80)

-
and in BC as

1 Z–lc– ’ll
(lC + 11< z < lC + 211).

Rflc(z) = – RC1l ‘

(81)

For simplicity, let us assume that (74) is satisfied and also

that g. = gC and s(O) = w. Then, as is clear from (51)-(53),

the effects of the linearly tapered bends appear only in the

undulations of the beam trajectory. In the following,

therefore, we restrict our attention to the beam trajectory.

If the light beam as given by (23) is incident on the

tapered bend s~ction 0~ and propagates_through the

circular bend AB and the tapered bend BC, the beam

trajectory 6Z(Z) in the outgoing straight section II is derived

as

d,(z) = 6(0) cos g,z + ‘Y) sin g~z
9s

+ * [(sin gJ1 – sin 2gJ1) cos g$c

+ (cos g.ll – cos 2gJ1) sin g,l. + sin gJ1]

“ Cos g,(z – 1. – 21,)

+. & [Cos g$l – 1

+ (Cos g,l~ – Cos 2gJJ Cos g.lc

– (sin g.ll – sin 2gJJ sin gJc]

“ sin g,(z – ZC– 211). (82)

If we put

~ = 2TCN
l— N = 1,2,3,. . “

9s ‘
(83)

equation (82) simplifies to the same form as (67), in which
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the effects of the circular bend have been perfectly eliminated.

The design condition of this method is listed in method (c)

of Table I.

Numerical results are given in Tables II–IV, which were

obtained by applying the methods of (72), (77), and (c) of

Table I.

V. ANALOGIES OF OPTICAL WAVEGUIDES CONSISTING OF

LENSLIKE MEDIA TO CIRCULAR TEO ~ WAVEGUIDES

A. Sinusoidal Bend

As stated before, in the sinusoidal bend, the divergence

phenomenon of the beam trajectory occurs when the

bending period p is just equal to 2z/g. Let us compare this

phenomenon with the mode conversion at the sinusoidal

bend of the TEO1 circular waveguide. As is well known,

in the case of the TEO ~ circular waveguide, when the bending

period p is equal to the beat wavelength between the TEO1

mode and any coupled mode, then continuous power

conversion occurs from the TEO ~ mode to that coupled

mode, and results in a large mode-conversion loss [14],

[15]. On the other hand, if we derive the beat wavelength

2~ of the optical waveguide consisting of a lerislike medium

from (34) according to the definition l/1~ = 1/2, – l/Ay - ~,

we find that the quantity 2rc/g previously mentioned is

nothing but the beat wavelength lb between the norma~

modes of the optical waveguide. Therefore, the divergence

phenomenon of the beam trajectory in the lenslike medium

may be considered as resulting from mode conversion to

higher order modes, which occurs when the bending period

p is equal to the beat wavelength 2n/g.

B. Serpentine Bend

As clarified before, in the serpentine bend of the optical

waveguide, the divergence phenomenon of the beam trajec-

tory arises when the support interval L is equal to an integral

multiple of 2z/g (L = 2nn/g: n = 1,2,3, ” “ “). As in the

preceding subsection, we compare this phenomenon with

the mode conversion at the serpentine bend of the TEO1

circular waveguide. It is known [14] that in the case of the

TEO1 circular waveguide, if the support interval L is equal

to an integral multiple of the beat wavelength between the

TEO1 mode and any coupled mode, the continuums power

conversion occurs from the TEO ~ mode to that coupled

mode, resulting in a large mode-conversion loss. Therefore,

we may interpret the divergence pheriomenon of the beam

trajectory as resulting from mode conversion to higher

order modes, which occurs when the support interval L is

equal to an integral multiple of the beat wavelength 2z/g,

as previously stated,

C. Circular Bend

In the preceding section, we have proposed a new design

method of the circularly bent section of the optical wave-

guide, consisting of a lenslike medium, to remove the effects

of the bend. Several other methods have also been proposed

in the past [5], [9], [12], [20]. For example, Unger [5] and

Suematsu and Fukinuki [9] proposed to displace the center

axis at the bend towards the center of curvature by a small

amount d, as shown in Fig. A of Table V: Unger [5] also
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TABLE II
NUMERICAL EXAMPLESFORTHE DESIGN METHOD UTILIZING CIRCULAR BENDS OF LENSLIKE MEDIA AS MODE TRANSDUCERS

S1ra!ght section
Circularly bent C,rculary bent sections O-A and B-C

Type Of section A-B ( Mode transducer sections )

lens-like on-aXi~ focusing radius of focusing rad!us of focusing Ieqth of mode

medjum permittivity parameter curvature parameter curvature parameter transducer

&f(o) 9s R. 9. R, 9, 1,

3 (mm)-’ 10mm 3.003 (mmF’ 20 mm 3.001 (mm S 1.047 mm

SE LFOC 2.5

0.3 (mmi’ 10cm o.3o03(mmT’ 20 cm 0.3001 ( minr~ 10.47 mm

Gas-lens 1.0 0.447 m-’ 3 Km 0.4470 m-’ 6 Km 0.4470 m-~ 7.028 m

TABLE III
NUMERICAL EXAMPLES FOR THE DESIGN METHOD UTILIZING, CIRCULAR BENDS OF TAPERED LENSLIKE MEDIA AS MODE

k
TyP.? of

tens -ltke

medium

SELFOC

Gas - [ens

TRANSDUCERS

Circularly bent Circular bent sections CA and ~C
Stra!ght section

section A-B ( Mode transducer sections )

on-axis focusing radius of focusing radius of Iengt h of
constants of taper

permittlvity parameter curvature paramet w curvature mode

t%(o)
transducer

9. R. 9C R, 1, a 90%..

3 (mm T’ 10mm 3.3 ( mm~’ 21.52 mm 1.031 mm -1 .050X103 3.0j:mjl

25 3 (mm S 10mm 3.03 (mm~’ 2013mm 1 050mm 5.278 X 165 3 Op:mil

0.3 (mmY 10cm O 3 (mmF’ 1998cm 1050cm 5552x164 0.3001
(mm?

10 0.477 m-l 3 km 0.477 m-’ 6 km 7.028 m 2780x1C7 O4470 m-%

TABLE IV
NUMERICAL EXAMPLES FOR THE DESIGN METHOD UTILIZING LINEARLY TAPERED BENDS OF LENSLIKE MEDIA AS MODE

Type of

lens-like

medium

SELFOC

Gas-1 ens

TRANSDUCERS

Circularly bent Circularly bent sect!ons ~A CM ~C
Straight sect!on

sect!on A-B ( Mode transducer sections)

)n -axis focusing radius of focusing focusfng length of mode

permittlwty parameter curvature parameter parameter transducer

t: (o) 9, R, 9. 9 II

3 (mm? 10mm 3 (mmi’ 3 (mm J’ 2.094 mm

25

0.3 (mmJ’ 10cm 0.3 (mmF’ 0.3 (mm}’ 20.94 mm

10 0.447 m-’ 3 km O 447 m O-447 m-’ 14056 m
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proposed to taper the radius of curvature R without dis-

placing the center axis, as shown in Fig. Cl of that table.

These methods were devised to eliminate the undulation of

the beam trajectory without considering the fluctuations of

the spot size. On the other hand, Imai and Matsumoto [20]

proposed not only to displace the center axis at the bend by d,

as shown in Fig. A of Table V, in order to eliminate the

undulation of the beam trajectory, but also properly to alter

the distribution of the permittivity at the bend, as shown in

Fig. B of that table, in order to eliminate the fluctuation of

the spot size.

Table V compares the aforementioned design methods,

including the authors’ methods proposed in the preceding

section, with several conventional design methods for a

circular bend of the TEO ~ circular waveguide [13]–[19].

It is interesting to note the following corresporldences. The

method of Unger [5] or Suematsu and Fukinuki [9] for

eliminating the undulations of the beam trajectory cor-

responds to the method proposed by Kumagai and Yoshida

[17], [18] to eliminate coupling from the TEO1 to the TE1n

modes, as shown in Fig. A of Table V. The method of Imai

and Matsumoto [20] or Suematsu and Fukinuki [9] for

eliminating the fluctuations of the spot size (Fig. B) cor-

responds to the, method proposed by Morgan [16] to

eliminate coupling from the TEO ~ to the TM ~~ modes as

shown in Fig. B’. On the other hand, the method of the
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TABLE V
DESIGN METHODSOFCIRCULAR BENDSOFTHE OPTICAL WAVEGUIDE CONSISTINGOFA LENSLIKE MEDIUM AND THE CIRCULAS

TEOI WAVEGUIDE

OPTICAL WAVE GUIOE CONSISTING OF
CIRCULAR TEOI WAVEGUIDE

A LENS- LIKE MEDIUM

~~ :~=’ .:~-s

~ ‘% Fluctuation of the beam trajectory Coupling to TE,fi modes can be

can be eliminated (5) , (9) . eliminated (f7] , (18] .

c On-axis permitt!vity E(R)
0

Permittivity distribution

.-
:

*

,...,,.. or focusing parameter

o
...........,

~ ~.,..... r
Ill R

+2!2RS,]

g is varied (9], (2o) 0
,.:..,.::,.,:.

5 J::,..,:,:...
t,(r)= &( R)(l-Sz(,-R)z)

!?,?~.$
.,,.

~w
:~ ,: F,g. B Fig. B’
z:
E
t Fluctuation of spat size can be COUpling to Tf.fII modes can be~ .!?

eliminated . eliminated .

, fi~jl=

o z
1

.— -—

: &~j. @’h

1, \, z .
m Fig. c’..-U

Fluctuation of the beam trajectory

cm be elirnimted (5] , (this paper].

[: $.hfi
‘“g’

:’!:=

.S
a

:: Fg. D
SE All fluctuations can be eliminated Coupling to all of unwanted modes

[12) , [this paper] carI be eliminated [19)

same authors [9], [20] for eliminating both the undulation

of the beam trajectory and the fluctuation of the spot size

by the combined use of the schemes of Figs. A and B

corresponds to the method proposed by Kumagai and

Yoshida [17], [18] to eliminate both the coupling between

TEO1 and TE1. and that between TEO1 and TM1 ~ by the

combined use of the schemes of Figs. A and B’. Also, the

method of Unger [5] as shown in Fig. Cl or that proposed

in this paper as shown in Fig. Cz for eliminating the un-

dulation of the beam trajectory corresponds to the method

proposed by Unger [15], as shown in Fig. C’, to eliminate

coupling between TEO ~ and TE1. modes. Finally, the

methods of (72) and (77) proposed in this paper for the

simultaneous elimination of the undulations of the beam

trajectory and the spot size (Fig. D) correspond to the

method of Miller [19] (Fig. D’): the input beam in the
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former or the input TEO1 mode in the latter is converted by

way of the section O~_ into the normal modes of the

circularly bent section All.

From these results we find that the methods for

eliminating the undulations of the beam trajectory in the

optical waveguide with a square-law lenslike medium

correspond to those for preventing the mode conversion

from TEO1 to TE1n modes at a circular bend of the circular

TEO1 waveguide, while the methods for eliminating the

fluctuations of the spot size in the former correspond to

those for preventing the mode conversion from TEO1 to

T,M1 ~ modes in the latter.

VI. CONCLUSION

Propagation behavior of light beams along curved lens-

like media has been analyzed with the help of the con-

venient method of analysis based on the approximate wave

theory. The sinusoidal and serpentine bends as well as the

circular bend and linearly tapered bend of the optical

waveguides with a square-law Ienslike medium have been

investigated in detail theoretically and numerically, and the

results have been compared with the previous results by the

ray theory, A new design method of the circular bend of the

optical waveguide has been proposed, by which the effects

of the circular bend can be completely removed without off-

setting and tilting the center axis of the bend, unlike the

previous methods, and the numerical examples have been

presented. Further,, we have shown the analogies between

the optical waveguide with a square-law lenslike medium

and the circular TEO ~ waveguide for the cases of sinusoidal

bends, serpentine bends, and circular bends. These analogies

are attributable to the multimode characteristic of any

transmission system. Therefore, the analogies shown in this

paper are not restricted to the particular waveguides

studied in the present paper, but they exist, in general,

among various multimode transmission systems. The

analogies may be utilized to explain the characteristics of

one system or to design one system from the known facts

about the other system. This may necessitate treating the

transmission system on the basis of the wave theory or to

study the behavior of the electromagnetic wave in terms of

wave modes. From this point of view, we have treated the

optical waveguide consisting of a square-law lenslike medium

as a multimode transmission system, and have discussed

the characteristics of this waveguide in comparison with

those of the circular TEO1 waveguide, one of the most

thoroughly studied multimode transmission systems.
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