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Analysis of Optical Waveguide Consisting of a
Square-Law Lenslike Medium and Its Analogies
to Circular TE,, Waveguide

SHINNOSUKE SAWA, MEMBER, IEEE, AND NOBUAKI KUMAGALI, SENIOR MEMBER, IEEE

Abstract—Propagation behavior of light beams along sinusoidal and
serpentine bends as well as circular bends and linearly tapered bends
of optical waveguides consisting of a square-law lenslike medium is
investigated in detail, both theoretically and numerically, on the basis of
the approximate wave theory. A new design method of the circular bend
for removing the effects of the bend is proposed and numerical results are
presented. The divergence phenomena of the beam trajectory in both the
sinusoidal and serpentine bends of the optical waveguide are discussed
in comparison with mode-conversion phenomena occurring in the circular
TE,; waveguide with the same bends. Several design conditions to
eliminate undulations of the beam trajectory and/or the spot size which
would occur at a circular bend of the optical waveguide are also studied,
and interesting analogies to the design conditions proposed so far to
prevent mode-conversion losses at a circular bend of the TE,; waveguide
are shown.

1. INTRODUCTION

T IS EXPECTED that dielectric waveguides operating
Iat optical frequencies will in the future constitute one
of the major transmission systems. In order to transmit a
light wave along a dielectric, it is necessary to achieve a
suitable variation of the permittivity (refractive index) in
the transverse cross section of the dielectric material [1].
The permittivity need not vary stepwise, but may decrease
continuously in inverse proportion to the square of the
distance from the center axis of the medium. A medium
with such a permittivity profile is equivalent to an ordinary
optical lens and hence is termed a (square-law) lenslike
medium. A typical example of a lenslike medium achieved
with a solid is SELFOC, which was developed jointly by
the Nippon Electric Co. and the Nippon Plate Glass Co. [2],
and one achieved with gas is the gas-lens beam waveguide
developed by Bell Telephone Laboratories [3].

Two analytical approaches are possible to clarify the
propagation behavior of light beams along lenslike media.
One is the geometrical-optics approach [4]-[6] and the
other is the wave-optics approach [7]-[10]. In the first
approach, the light beam to be transmitted is treated as an
optical ray, while in the second approach it is treated as an
electromagnetic wave. The geometrical-optics approach is
sufficient to clarify only the behavior of the trajectory of
the beam center (the so-called beam trajectory). How-
ever, the wave-optics approach is necessary in order to
clarify the modal behavior of the light beam such as mode
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conversion and the propagation constant as well as the
response of the electromagnetic fields.

In the present paper, we investigate in detail the propaga-
tion behavior of light beams along bends of square-law
lenslike media from the viewpoint of wave theory. General
expressions for the responses of electromagnetic fields of
light beams along curved lenslike media are derived, follow-
ing the approximate wave theory previously described [8],
[10]-[12]. The results are applied to a sinusoidal bend,
a serpentine bend due to the weight of the guiding system
itself, a circular bend and a linearly tapered bend, and the
propagation behavior of light beams is studied in detail
theoretically and numerically, compared with the results
obtained so far from the viewpoint of ray theory [4]-[6].
A new design method of the circular bend for removing
the effects of the bend is proposed, which makes it possible
to connect the circularly bent section to the straight section
without off-setting and tilting the center axis of the bend,
unlike the previous methods [5], [9]. Numerical results for
this design method are also presented. Further, the diverg-
ence phenomena of the beam trajectory occurring in the
sinusoidal bend and the serpentine bend [5], [6] and the
design conditions for the circular bend of the optical wave-
guide with a square-law lenslike medium [5], [9], [12],
[20] are discussed in comparison with the millimeter-wave
transmission system using circular TEy; waveguides [13]-
[19], and as a result various analogies between the two
guiding systems are shown.

For simplicity, two-dimensional lenslike media are used
and the analysis is limited to the paraxial beam approxima-
tions throughout the paper.

1I. GENERAL EXPRESSIONS FOR THE RESPONSES OF
ELECTROMAGNETIC FIELDS OF LIGHT BEAMS ALONG
CURVED LENSLIKE MEDIA

Let us consider a two-dimensional model of the bend
section of a square-law lenslike medium as shown in Fig. 1.
We assume that the radius of curvature of the bend varies
slowly as a function of z. Let the permittivity of the medium
be expressed as

e = e[l — g’ — R)7] M

where ¢, represents the constant permittivity on the center
axis of the medium r = R (on-axis permittivity), and g is a
focusing parameter specifying the rate of change of permit-
tivity in the transverse x direction. R denotes the radius
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Fig. 1 Curved section of the optical waveguide consisting of a

square-law lenslike medium.

of curvature of the bend, being a function of z or ¢ and
represented as R(z) or R(¢).

We also assume that the variations of the permittivity
¢ in the r and ¢ (or z) directions are small enough to be
neglected over a distance of a free-space wavelength A,
of the light beam. Then, the scalar wave equation which
determines the responses of the electromagnetic field of the
light beam is expressed approximately in polar coordinates

(r.9) as
12y

16 ( oV

A el s

7 or (r ar) 2 3¢
, 2

where sinusoidal time dependence of the fields with angular
frequency w is assumed, and p denotes the permeability
of the medium.

By performing the transformation of variabies from (r,¢)
to (¢,z) as

+ o?ue [l — g*(r R)z]V/=0

{=R(@)In F‘ﬁ) (3)
¢
2 = [ R0 ds, @
0
we can rewrite (2) as
’v V4 e 2
052 + + k*(0) exp [ITZ)]
2
Ti-om(enlid- 11
R(z) o*V v
R(){(é R())ac“ 62}
R'(2))? , 02V
+ (R9) ¢ - rar Y
Rz R@) (p _ _R@ v
* [{Rz(z) * R(z)} (€ = RE) R(z)]
(%)
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with
k() = o s, )

where the primes indicate the differentiation with respect to z.

Let us expand the exponential terms exp [2/R(z)] and
exp [¢/R(z)] — 1 in power series of £/R(z) and omit the
terms higher than third order by noticing that ¢/R(z) « 1
when x/R(z) « 1 (x = r — R) since

¢ =R (1 + -x—)

R(z)
x? x3 x4
TR TG weT D

Further, we discard the terms with R'(z), R'*(z), and R"(2)
in (5), by assuming

Vaio  \IR@ <1 glg- IR@)| < 1

R'(z)
<1 R'(2)| « 1. 8
°* |7 [R'2) ®
As a result, we have the simplified wave equation as
2V *V
— + — + k%0
02 922 ©
2 2
1+ —¢& - 2{1——} 2]V=O. 9
[ ot |1 - ) ©®
If we put
V(¢z) = U(&,2) exp [—jk(0)z](= U(x,z) exp [—jk(0)z])
(10)
with the assumption
"2 2
SUN « 2k | (or 82U « 2k(0) ! (11)
0z 0z>

and substitute (9) into (8), we see that the field-distribution
function U (¢,z) must satisfy the paraxial wave equation

PO o0,
55_2 ]2k(0)az k*(0)
2 g
[—R—)C+g {1- ZRZ()}é‘] ~0. (12)

For convenience, let us express the field-distribution
function U (£,0) of the input beam at z = 0 as

A(0)}Z

- jk(O)A'(O)f]
£ — AO)

He”[ o(0) ] (13)

where 6(0), A(0), and A’(0) are constants independent of &
and z, and He, (X) refers to the Hermite polynomial of
the vth order, defined as in [11, eq. (A2)].

Following the convenient method of analysis based on:
approximate wave theory [10]-[12] and with the help of
the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) method
[21], we derive the field-distribution function U (¢,z),
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from which the field distribution function U(x,z) can be
obtained by approximating the variable ¢ by the first two
terms of its expansion (7) as ¢ = x — x?/[2R(z)]. The
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@) = [¥() - ROF@IR@] {1 - 6@IRE)}
1 f sin [90{0(2) — 00}]

f@) =

result is given below. gO\/ p(2) R(n)\/ p(n)
v/2
(cos gob + u(0)sin go0 + j 2 D) sin gOO)
U(x,z) = P1/4(Z) : ( CEEN
(cos gob + u(0) sin g0 — j 02(0) sin go())
) {x =@} _ . s _2\ 3%(2)/R(z) . k(0),
P [ 25%(z) ~ JKOY'() {1 R(z)} ¥ 26%(z){1 — &(2)/R(2)}*
Nsens =93 (1 ) H
[0 {1 - 22 (1 - ED)) - s0p© - v
Vo X
- He, : 2R( )} (14)
a(0) \/ (cos go0 + u(0) sin go0)* + 4(0) sin? go0
where
df(2) _ 9 \/
1 _ 1 : B ‘E} ( ) S(Z){ 5(_2)} f(O) dz z=o’ p(Z) 2R2(Z)
s(z)  ’(2) R(2) R(2) R(2) i) &5 ®
15)  p/(0) = 422 z = P2
A - B o= 0" O e
() = A(2) {1 + %} (16) . 50,
0(z) =0 = dn, = d
with (2) fo pm) dn,  ¥(2) f R ™
[cos gob — u(z) sin gof — j ﬂ(z—)-) {@ + uu(2)) sin god + (u(z) — u(0)) cos 900}]
1 p(2) We {17
2
o*(z)  <X0) cos gob + u(0) sin gof — 2(0) sin go0
_ p'(0) 2 1
Az) = p~Y*%(2) |{cos g4 + 2=~ sin g0 = \/1————-—, e = ———. (20
e [( T 29 ) A A O M S
80yt 1
o0 {1 B R_(O—)} * 5—0 If we restrict our attention to a mild bend whose curvature
is small enough to satisfy 8(z)/R(z) €« 1 and &'(z)/
. [3/(0) {1 — 5(&} _ f’(O)] sin 909] + f(2) [gOR(z).] « 1 together with x/R(z) <1, we can adequz&tely
R(0) approximate 1/s%(z) and &(z) in the previous expressions
(18) as
[cos 600 — u(@) sin 908 — 1 D {(1 + u(u(0)) sin go0 + (u(z) — u(0)) cos goe}]
1 ~ p(2) W 2D
s(2)  (0) €0s gof + u(0) sin go0 — j 2( )sm gob
1 _ 1 _ O i 3_'@ _ O ~ pT1/2 9 0 o) 50
d%0)  s%0) { R(O)} + KO R(0) {1 R(O)} o) = 7 [(cos 90 T 4o 29, *in 9o ) ©
(19) + (‘M) sin 900] +f(2). 2
where 9o
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For this case, (14) may be regarded approximately as a
Hermite-Gaussian field distribution in the transverse x
direction, representing the response of the light beam whose
input condition is given by

S(0)}?

U(x.0) = exp [ {x 2570)

jk(O)é’(O)x]

- He [x — 8(0)
"L s0)

where 1/s%(0) is an input wavefront coefficient [11], and
6'(0) and 6(0) are the input slope and input displacement
of the beam center from the optic axis x = 0.

] (23)

I11. PROPAGATION BEHAVIOR OF LIGHT BEAMS ALONG
CURVED LENSLIKE MEDIA

A. Sinusoidal Bend

Let us consider a sinusoidal bend as shown in Fig. 2,
in which the curvature 1/R(z) varies sinusoidally with z as

1 1 . (27rz)
—— = — §in |—
R(z) R, p
where 1/R,, and p are constants, denoting the maximum

value of curvature and the period of the bend, respectively.
For simplicity, it is assumed that

1 . 5 [2nz
s st | —) « 1.
9°Ry, p

Substituting (24) into (14)~(22) and taking the previous
assumption into consideration, we can derive the field-
distribution function U(x,z) of the light beam with the input
condition of (23) as

(24)

(25)

W2 v/2
(cos gz + j — 0 sin gz)

U(x,z) = —T T
(cos gz — j 0 sin gz)
. exp [ b zf()z)} — jk(0)8'(z)x
+ 150 (55) - 3050}
. He, |- adi 5(2) (26)
0 Jeos 0"
where
) ) cos gz —j 52(2) sin gz
22 sX0 — (27)
sz s0) cos gz — j ;v sin gz
s4(0)
8(z) = 6(0) cos gz + 30 sin gz + &(2) (28)
g
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lens — like medium

Fig. 2. Smusoxdal bend of the optical waveguide consisting of a
lenslike medium.

. 2nz 2

g sin — — ~—sin gz 5

p p . T
. , dforp#— (29)

5(z) = { gR.(g* — 4n*|p?) g

sin gz — gz cos gz 2n
: , for p = Z£ (30
2¢°R,, orp g G0
8@ = Lo (1)

dz
with

w = 1/v/gk(0). (32)

From (27) the spot size of a Gaussian beam is calculated
as

: 1
Re'/2 {1/s%(0)}

. B {1 + j:;% + (] — ﬁ) cosZgz}
+ Im {;;f(—;} sin 2gz] 1/2.

The trajectory of the beam center (the beam trajectory) is
given by (28)-(30). By setting w(0) = w, 6(0) = 0,5'(0) = 0,
and R, = o in the above results, we get the propagation
constant f, for the normal modes in the straight section
as

w(z) =

(33)

B, = k(©) — g(v + )

with v = 0,1,2,---

From (26)—(33), the following conclusions are derived,
regardless of the input conditions of the light beam.

1) When the period of the bend p is not equal to 2x/g,
the beam trajectory 6(z) undulates about the center axis
of the medium; the light beam does not diverge from the

(34)

center axis and hence stable transmission can be realized. | .

2) When the bending period p is just equal to 2r/g, the
beam trajectory deviates from the center axis of the medium,
undulating increasingly with the transmission distance; in
othet words, the so-called divergence phenomenon of the
beam trajectory arises. As a result, the diffraction loss due
to the finiteness of the cross section of the medium for
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practical use increases without limit, and hence stable and
low-loss transmission becomes impossible.

These conclusions are in complete agreement with
those previously obtained by the ray-theory approach [5].

B. Serpentine Bend

Next we consider a serpentine bend as shown in Fig. 3.
Such a bend would occur inevitably in the practical guiding
system supported or suspended with equal spacing L. The
center axis of the guiding system is bent along an elastic
curve caused by its own weight, which is given by the theory
of elasticity [14] as

o s (- e
with . W_ﬁ -
24el

where W, e, and I are, respectively, the weight per unit
length, the modulus of elasticity, and the moment of
inertia of the guiding system.

The curvature of the elastic curve (35) is computed as

e B ) () e
R(z) I? L L
where we have assumed
dxo(z)|? K?
—OZ— « 1 = « 1 - (38)

In the interval 0 < z < L, (37) may be expanded in the
Fourier series
(2nn )
os |— z|.
L

Substituting (39) into (14)-(22), we have the field-
distribution function U(x,z) for this case. The result is
expressed by (26), in which J(2) is replaced with

1 12K & 1
Z—ZC
n

Re) - e (39)

8(z) = {6(0) — 5(0)} cos gz + ) sin gz + 8(z) (40)
g

where
(27m )
CosS | — Z
1K 3 L
n? #=1 n¥(4nin® — g1y’
for L # 2™ (41a)
3(z) = g
cos (-—-—— z) .
12K & L _ gzsingz
7% oSw n2(dntn? — 213  2gLn)?’
for L = X% (41b)
g

Equation (40) represents the trajectory of the beam center.
The spot size is given by the same equation as (33).
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Fig. 3. Serpentine bend of the optical waveguide consisting of a

lenslike medium.
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Fig. 4. Normalized beam trajectories of the light beam along the
serpentine bend of the optical waveguide consisting of a lenslike
medium. Input conditions of the light beam are assamed to be d(0) =
5(0) and &'(0) = 0. (a) For the case of L # 2zn/g. (b) For the case
of L. = 2=rn/g.

In particular, for a light beam satisfying the input
conditions

50) = 3(0) O =0 (42)

we have
oz) = 5(2). 43)

Therefore, for the case of L # 2nn/g, the beam trajectory
repeats over the support or suspension interval as shown in
Fig. 4(a), while for the case of L = 2nn/g the trajectory



446

deviates from the center axis of the medium, increasing
in amplitude of undulation as the light beam propagates,
as shown in Fig. 4(b).

Generally, from (40), (41a), and (41b), we obtain the
following conclusions regardless of the input conditions.

1) When the support interval L is not equal to an integral
multiple of 2zn/g [L # 2an/g; n = 1,2,3,--+], the beam
trajectory undulates around the center axis of the medium;
in other words, the light beam does not diverge from the
center axis and hence stable transmission is obtained.

2) When L is just equal to an integral multiple of 2z/g
[L = 2nn/g; n = 1,2,3,- -], the divergence phenomenon
of the beam trajectory occurs; in other words, the light
beam fluctuates increasingly with the transmission distance,
deviating further from the center axis of the guiding system.
As a result, for this case, too, the diffraction loss increases
indefinitely and hence ‘low-loss transmission cannot be
possible. Here, it must be noted that in the case of the
sinusoidal bend the divergence phenomenon of the beam
trajectory occurs only when the bending period p is equal
to 2x/g, as analyzed already; whereas, in the case of the
serpentine bend this phenomenon occurs not only when
the support interval L is equal to 2x/g but also when L is an
integral multiple of 27/ g, because the curvature of the elastic
curve of (39) contains spacial harmonics of the fundamental
period L.

C. Circular Bend

Consider a circular bend of the lenslike medium as shown
in Fig. 5. For this case, the curvature of the center axis
of the medium is given as

1

1
R(z) R,

Substitute (44) into (14)-(22), and we have the field-
distribution function U(x,z). The result is represented by
(26) in which 1/s%(z), 8(z), 8'(z), g, and w are replaced,
respectively, with 1/5,2(z), 6.(2), 6,(z), §, and w, given
below. ) ‘

= constant.

(44)

N ()
cos jz — § sin §z
L _ W’ 45)
si(2)  s%0) cos jz — j W sin gz (
s*(0)
) 1 80 .
0.(z) = {6(0) — —— + 4+
(?) ( (0) gNZR) cos jz 7 sin §z 7R,
(46)
d 2 1/2
8. (2) = L o2, §= 1———) ,
@ =@ G- e
[
W, = ————. (47)
k(0)

Equation (46) represents the beam trajectory, and the spot
size w,(z) and the propagation constant £, for the
normal modes in the circular bend are obtained from (33)
and (34), respectively, by replacing w and ¢ in those
expressions with the w, and § of (47).
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Fig. 5. Circular bend of the optical waveguide consisting of a lenslike
medium.

If the input conditions of the light beam are chosen as
L s@=-0 -1
J’R, s%0) w2
the beam trajectory and the spot size are simplified, res-
pectively, to ‘

1
wy(z) = w,.

~2 Rc c( ) 4
For the input conditions of (48), the light beam propagates
along the bend without the fluctuations of the spot size
and the beam trajectory, keeping the input spot size w,
(the characteristic spot size of the circular bend) and the
input displacement of the beam center 1/(§2R,). In this sense,
(48) may be said as the matched input conditions for the
circular bend.

If we assume 2/(g*R,%) « 1 and neglect this term in the
expressions (43)-(49), these expressions are reduced to the
previous results obtained by the ray theory [5].

30) = (48)

5.) = (49)

D. Linearly Tapered Bend

We consider a linearly tapered bend as shown in Fig. 6,
in which the curvature of the center axis of the medium
increases linearly with distance z from zero on the straight
section to a maximum value 1/R, as

1

— = 50
RG) (30)

—Z,

0<z<l
Rl O=z=<)

where [ is the length measured along the center axis of the
mediom x = O.

Substituting (50) into (14)—(22), we obtain the field-
distribution function U(x,z). The main parameters for this
case, which govern the response of the light beam, are given
as follows:

222

172
z) = |1l - —/—/——
pz) ( ngtzlz)

2 \1/2 =
o(z) = {z (1 - __22_) L 9RIg (\/2 z)]
2 g?R212 \/2 R
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Fig. 6. Linearly tapered bend of the optical waveguide consisting of a
lenslike medium,

v (= Jg%"(‘aj) (51)

222 )—1/4
z) 2 ] — =
2 ( g*RzA1?

. {5(0) cos g(z) + 90 sin g@(z)}
g

el (i- 222 )-1/2
gZRtl 92Rt212
{ (1 2’ )_1/2 Lsin g0 52
z _——_—— — — SIn .
po - g(z)} (52)

Equation (52) gives the beam trajectory, and the spot size
of a Gaussian beam w(z) is calculated as

2 \-1/4
w(z) = (1 - ) Re-1/2 {_‘..}
g*R 12 s3(0)

B ;s(Lo;F (1= i) eos2009)

WZ

+ Im {82(0)} sin Zgﬂ(z)] 1/2.

(53)

Fig. 7(a) and (b) illustrates the calculated beam trajectory
normalized by (\/ 2 ¢)"! in Fig. 7(a) and 6(0) in Fig. 7(b),
as a function of the normalized distance z/(gR,l/\/ 2),
assuming that +/2/(g2R,J) = 0.01. In Fig. 7(a) the input
conditions of the light beam are taken to be 6(0) = §'(0) =
0, while in Fig. 7(b) 6(0) = 1/(g°R/) and &'(0) = 0. Fig. 8
shows the calculated spot sizes normalized by the input
value w(0) as a function of the normalized distance
z/(gR,l/\/ 2), in which the parameters are taken as
V2/(g*RJ) = 0.01, and w(0) = w/2, w, and 2w.

From these figures, it is seen that the light beam wanders
away from the center axis of the medium as it propagates,

g
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Fig. 7. Normalized beam trajectories of the light beam along the
linearly tapered ben of the optical waveguide consisting of a lenslike
medium. (a) For the case of 4(0) = &(0) = 0. (b) For the case of
&(0) # 0 and 6'(0) = 0.
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Fig. 8. Normalized spot sizes of a Gaussian beam along the linearly tapered bend of the optical waveguide consisting
of a lenslike medium.

straight
section [

o

straight
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Fig. 9. Circular-bend section directly connected to the straight
sections I and II without off-setting and tilting the center axis of

the waveguide.

with slight undulations of the beam trajectory as well as

fluctuations of the spot size, increasing the amplitudes and

periods of the undulations and fluctuations. Especially,

when the input wavefront coefficient 1/s2(0) is taken as
1 I

s2(0)  w? (54

“the spot size w(z) becomes

9,2 \—1/4
7a77)

and as a result its fluctuations are perfectly removed.
Contrary to this, we cannot find any input conditions to
remove the undulations of the beam trajectory. If we
assume 2/(g°R,*) « 1, and hence that the terms with

wz) = w (1 - (55)

1/(g°R,?) in expressions (51), (52) can be discarded, the beam
trajectory of (52) completely agrees with the result of the
previous analysis based on the ray theory [5].

IV. A DEssiGN THEORY OF THE CIRCULAR BEND OF OPTICAL
WAVEGUIDES CONSISTING OF LENSLIKE MEDIA

A. Effects of a Circular Bend

Suppose that a circular bend is inserted in an optical
waveguide consisting of a lenslike medium, as shown in
Fig. 9. The axis of this bend coincides with the axes of the
straight sections and the permittivity is distributed in the
straight sections I and II as

P's(x) = 83(0)(1 - gszxz)

and in the bend as

(56)
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Sc(”) = sr:(-Rc){]- - gcz'(r - Rc)z} (57)

where R, is the radius of curvature satisfying |r — R,| « R,
and £,(0) and ¢(R,) represents the on-axis permittivities in
the straight and circularly bent sections, respectively. g, and
g. are the focusing parameters in the straight and bent
sections, respectively.

Let us assume a Hermite-Gaussian beam as given by
(23) at the entrance of the circular bend z = 0. Then the
wavefront coefficient 1/s,%(z) and the beam trajectory
8,(2) of the light beam in the outgoing straight section II
are calculated from (45) and (46) as

L __1 [cosglcosgz - wczsin{ilsingz
52°(2)  5%(0) ‘ ) N ‘ ’
2( ) wee .
(cos d.lsin g,z + 2 5 sin gl cos gsz)]
[cosglcosg W' lsxngz—;w2
c § Wc § 2(0)

w 2 -1
. (cos gl sin gz + =% sin gl cos gsz)]
w

_ L )
g R,

. [cos glcosgez — 9e sin gl sin gsz]

gs

(38)

85,(2) = (5(0)

+ 3 [cos g.lsin gz + 9s sin g.l cos gsz]
s de
COS g,z
+ ____._5 59
7R, (59)
where
w, = ————1————- w. = ._1__.__
RNZTI0) © Vik(R)
k(0) = opef0),  k(R) = ovue R),  (60)
. 2
dg.= 9. \/1 TR (61)

From (58)-(61), we see that the effects of the circular bend
are divided into a primary part due to a curvature 1/R,
and a secondary part due to (1/R.)%.!

B. Design Methods for Removing the Effects of a Circular
Bend

In order to eliminate the effects of the circular bend
clarified in the preceding section, we propose a new design
method of the circular bend. In this method, a mode

! Equations (58)-(61) further mclude the effects of a bend due to
higher order terms in (1/R.)3,(1/R.)*,- - -. However, under a Hermite—
Gaussian approximation and within the accuracy of the phase constant
adopted in this paper, it would be meaningless to take into considera-
tion corrections higher than the third order.

449

transducer is inserted between the straight section and the
circularly bent section, by which beam modes are converted
into normal modes in the circular bend.

Let us derive the design conditions of the mode trans-
ducer, according to the following examples.

1) Circular Bend of Lenslike Medium as a Mode Trans-
ducer : Let a circular bend be divided into three sections
()A AB and BC as in Fig. 10, wherein the radii of curvature
are R,, R,, and R,, and the lengths are [, /., and /, res-
pectively. The permittivity in the sections OA and BC
which play a role of mode transducer is given by

’51(") = & (R){l — g:%(r — R1)2}

and that in the section AB is given by (57).

If the light beam is incident upon the bend off-axially
and obliquely as given by (23), the beam trajectory in the
outgoing straight section If is derived as

0,(2)

(62)

= (K, sin g . + K, cos §l. + K3)
- cos gz — 2, — 1)
+ L (K sin g l. + K, cos g l. + K3')
gs

- singfz — 21, — 1)

+ 6(0) [{cos 24,1y cos g l, — L (@ + %)
2\g. g/

- sin 2g,1, sin gclc} ccos gz — 21, - 1)

g1

{sm 2§14 cos gl
gs

(g” cos® §,l; — @ sin? glll)
g1 9

- sin g‘clc} -sin gz — 21, — lc)]

490 [gs

{sm 24,1, cos I,
gs g1

(91 cos? §,l; — {’-c sin? glll)
gc gl

- sin gclc} ccos gz — 21, — 1)

+ {cos 2§y cos g 1, — 1 (gT + gs)
2\g. 4,
- sin 2g,1, sin g"clc} - sin gz — 21, — lc)] (63)

where

) sin g1,

(—— + gT) cos §lq sin g1y
9.
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X

Rstruight section |

0,

o
Fig. 10. Proposed design method of the circular bend for eliminating the effects of the bend.

&
|

<( 1 1 ) cos §,!
== ~25 = 2p 141
chRc 912R1

+

1 ~ T
7.R, (cos® g1, — sin? 9111)}
1

i
!

)cos gily + =
g1 Ry

(gcch glle
7] ( 1 1 )cosg 1
=25 = 2n 141

¢ gcch g12R1

+ LL (# cos® §,1;, — % sin” glll)
g1y \g ge

Kl’ =

Kz’ = (1 - ZCOS glll)}

{ g, _ 1
g~c2Rc glRl

- sin g4,

e
I

1 g1 ) s
— - = sin §,! (65)
(glRl gcch '

’ =g / Lo 2
' ! g 12R12

and g, is given by (61).
The first and second terms in (63) including K,,K,,K;
and K,',K,',K;’ given by (64) and (65) are related to the

curvatures 1/R, and 1/R,, the first-order effect in the bend.
The third and fourth terms in (63) are, as is clear from (61)

(66)
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mode transducer

mode
transducer

straight
[r=rR}<< R, section I
lr=R]<<R

and (66), related to the curvatures squared (1/R,)? and

(1/R.)?, the second-order effect in the bend. For R, — co,

R, - o0, and g = g, = ¢,, (63) simplifies to
8,(2) = 8(0) cos gz + A sin ggz.

s

(67

(64) Equation (67) would be obtained if 074, ATS’, and BC were

all straight sections.
~ Equating (63) to (67) for any /,, 5(0), and ¢’(0), we have

K1=K2=K3=O

K' =K' =Ky =0 (68)
1(&{1+f_c)=1, 9s - 1, (69)
2\g. 4. g1

Equations (68) and (69) represent the conditions for remov-
ing the first-order and second-order effects of the bend,
respectively.

In order to remove the effect of the bend completely
up to the second order included in the spot size, we must
further require the matching conditions for the spot sizes
in the straight and circularly bent sections as

1 1 1

= — = (70)
Vak(0)  Vik(R) Viiki(R,)
with
ki(Ry) = oV ue (Ry). an
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From (64)-(66) and (68)-(71), we can determine /,, R,,
g, and g,. As a result, we obtain a design method as

1 =@+—l)ﬂ’ (N=0,1,2,...)
9s
Rl = 2Rc 81(R1) = sc(Rc) = 8s(0)
1 i 1/2 I 1 1/2
=g, (1 + —5— . +
=9 ( 2gs2R02) g ( 9.2 Rﬁ)

(72)

where we have assumed that [ is arbitrary and R, # co.

The electromagnetic fields of the outgoing straight section
I derived as a result of the design method of (72) agree
with those which would be obtained by assuming that 04,
AB, and BC are all straight (R, = R, = o0). This means
that the effect of the bend has been completely removed.
Moreover, the fields in the circularly bent section AB
coincide with those in the straight section II, if the beam
trajectory d,(z) is replaced with 8.(z) as given by

()

sin g,z.

0.(2) = R + 6(0) cos gz + —

s c
The results are identical with the fields Wthh would be
obtained by displacing the axis of the circular bend towards
the center of the curvature by 1/(g,*R.) [5], [9].
If the radius of curvature R, is large enough to satisfy
the condition

(73)

2

9s°R.’
the design method of (72) is simplified to method (a) of
Table 1. In this case, the method requires that the length /,
must be equal to an odd multiple of /g, and that the radius
of curvature R; be equal to 2R,, but the focusing param-
eters g, and g, may not vary from those of the straight
section.

2) Circular Bend of Tapered Lenslike Medium as a Mode
Transducer: Let us replace sections 04 and BC of Fig. 10
by tapered lenslike media with a raised-cosine taper [12].
We assume that the permittivity is given in OA as

TzZ\ 2
1 + acos T
g04(r,2) = &1(Ry) Irl - 90t2 (—-1—+—a——1) (r — R1)2]

<1 74)

(75)
and in BC as

1 — acos
Iy

iz — 1, — lc)}2

epc(7,2) &q( 1)[ Gor T+ a

(r - Rl)z] (76)

and also that in 4B it is given by (57). In the expressions
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TABLE I
DESIGN CONDITIONS FOR ELIMINATING THE EFFECTS OF THE CIRCULAR
BenND IN WHICH 2/(g,2R.?) « 1 1S ASSUMED

Simplified Design Conditions

2N+1
= 2N 0,1, 2
gl
lc= arbitrary , R.= arbitraryyo
(a)
G =9 =9

§(R)= £ (R) = £,(0)

R = 2R

e € T I PP —
s

le = arbitrary , R.=arbitrary § &

(b 9= 9, 9= 17(2¢R!)
£(R) = £(R) = £,(0)
Ri = Re [1+(—§:—-)M]

2N
9.

=

(c) le = arbitrary , R = arbitraryx e

9= 9 , &(R)= E(0)

(a) The circular bend of a lenslike medium as a mode transducer.

(b) The circular bend of a tapered lenslike medium as a mode
transducer.

(c) The linearly tapered bend of a lenslike medium as a mode
transducer.

(75) and (76), g, and a are independent of 7 and z ,and we
assume 0 < |q| < 1.

Suppose that an Hermite-Gaussian beam is incident
off-axially and obliquely and determine /;, a, go,, and R,
by the same procedure as was done in the preceding sub-
section. Then we have the following design method:

(2N + D=

Iy = ———,

o
1 - 0.2 - gsngt_z(l — 0-2 —_ zgs_ZRc—z)
[1+ {6% + 990 (1 — 0 — 29,7 *R,"H}'*]?

Jor = gs(l + 29s~2R1_2)1/2

(N =012,

a =

R, = R{l + o¢¥*(1 — 29,72R,~2)*4 (77
with
Gor = g‘“ {1 = 290, 2R + 1}, o = g./g,
(78)

where we have assumed that ¢, (R;) = &R, = &/(0),
R, > R, and [, is arbitrary.

If g. = g,, this method agrees with that proposed in [12]
to remove the undulations of the beam trajectory and the
spot size for a light beam incident onto the axis with the
input conditions §(0) = §'(0) = 0, s(0) = w,. Here we
must note that by this design method, unlike the method
of (72), a lenslike medium having the same focusing
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parameter as in the straight section can be applied to the
section AB, even if the condition of (74) is not satisfied.
The fields in the straight section II derived as a result of
this method agree with_those which would be obtained if
sections OA, A/IZ, and BC were made straight with a length

2
A, =21, + 1, 1—9—6\/1-_—_).
' ( g 9:2R?

Thus we see that the effect of the bend has been removed
perfectly except for the phase shift due to the term
(gel 9Nt = 2/(9*R.?).

If the condition of (74) is satisfied, the design method of
(77) is reduced to method (b) of Table I.

3) Linearly Tapered Bend of Lenslike Medium as a Mode
Transducer: Let sections OA and BC of Fig. 10 be replaced
by linearly tapered bends of the lenslike medium as in-
vestigated in the preceding section. We assume the curvature
of the tapered bend in OA as

(79)

1 z (80)

=, (O<z<l
Rou(2) R/l ( ’ Y
and in BC as
1 =_z—l(_.—211, (lc+11$ZSlc+2ll)'
Rpc(2) R
(81)

For simplicity, let us assume that (74) is satisfied and also
that g, = g, and s(0) = w. Then, as is clear from (51)-(53),
the effects of the linearly tapered bends appear only in the
undulations of the beam trajectory. In the following,
therefore, we restrict our attention to the beam trajectory.
If the light beam as given by (23) is incident on the
tapered bend section 04 and propagates _through the
circular bend 4B and the tapered bend BC, the beam
trajectory J,(z) in the outgoing straight section II is derived
as
9'(0)

9,(z) = (0) cos g,z + sin g,z

s

3 [(sin g I, — sin 2g,l,) cos g,l,
s Irefl

+ (cos g(ly —cos2g/)singl,. + sin g/l ]
- cos gz — 1, — 20)

1
+.— 7 [cos g, — 1

s et
+ (cos g,y — cos 2g,1,) cos gl.
— (sin g I, — sin 2g,) sin g,l.]

- sin gz — I, — 21)). (82)
If we put
=N N 123, (83)
9s

equation (82) simplifies to the same form as (67), in which
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the effects of the circular bend have been perfectly eliminated.
The design condition of this method is listed in method (¢)
of Table 1.

Numerical results are given in Tables II-IV, which were
obtained by applying the methods of (72), (77), and (c) of
Table 1.

V. ANALOGIES OF OPTICAL WAVEGUIDES CONSISTING OF
LENSLIKE MEDIA TO CIRCULAR TE;, WAVEGUIDES

A. Sinusoidal Bend

As stated before, in the sinusoidal bend, the divergence
phenomenon of the beam trajectory occurs when the
bending period p is just equal to 2n/g. Let us compare this
phenomenon with the mode conversion at the sinusoidal
bend of the TE,, circular waveguide. As is well known,
in the case of the TE,, circular waveguide, when the bending
period p is equal to the beat wavelength between the TE,
mode and any coupled mode, then continuous power
conversion occurs from the TE,, mode to that coupled
mode, and results in a large mode-conversion loss [14],
[15]. On the other hand, if we derive the beat wavelength
4, of the optical waveguide consisting of a lenslike medium
from (34) according to the definition 1/4, = 1/4, — 1/A,_4,
we find that the quantity 27/g previously mentioned is
nothing but the beat wavelength 1, between the normal
modes of the optical waveguide. Therefore, the divergence
phenomenon of the beam trajectory in the lenslike medium
may be considered as resulting from mode conversion to
higher order modes, which occurs when the bending period
p is equal to the beat wavelength 27/g.

B. Serpentine Bend

As clarified before, in the serpentine bend of the optical
waveguide, the divergence phenomenon of the beam trajec-
tory arises when the support interval L is equal to an integral
multiple of 2n/g (L = 2an/g: n = 1,2,3,--*). As in the
preceding subsection, we compare this phenomenon with
the mode conversion at the serpentine bend of the TE,,
circular waveguide. It is known [14] that in the case of the
TE,, circular waveguide, if the support interval L is equal
to an integral multiple of the beat wavelength between the
TE,; mode and any coupled mode, the continucus power
conversion occurs from the TE,, mode to that coupled
mode, resulting in a large mode-conversion loss. Therefore,
we may interpret the divergence pheriomenon of the beam
trajectory as resulting from mode conversion to higher
order modes, which occurs when the support interval L is
equal to an integral multiple of the beat wavelength 2n/g,
as previously stated.

C. Circular Bend

In the preceding section, we have proposed a new design
method of the circularly bent section of the optical wave-
guide, consisting of a lenslike medium, to remove the effects
of the bend. Several other methods have also been proposed
in the past [5], [9], [12], [20]. For example, Unger [5] and
Suematsu and Fukinuki [9] proposed to displace the center
axis at the bend towards the center of curvature by a small
amount &, as shown in Fig. A of Table V: Unger [5] also
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TABLE 11
NuMERICAL EXAMPLES FOR THE DESIGN METHOD UTILIZING CIRCULAR BENDS OF LENSLIKE MEDIA AS MODE TRANSDUCERS

Circularly bent Circulary bent sections OA and BC
Straight section . o .
Type of section AB ( Mode transducer sections }
lens-like | on-axis focusing radius of | focusing radius of | focusing |length of mode|
medium permittivity parameter curvature parameter curvature parameter | transducer
o) 9 Re g, Ry 9, b
3 (mm)™" 10 mm |3.003(mmS'| 20 mm |[3.001(mmf"|1.047 mm
SELFOC 2.5
0-3 (mmy' | 10 cm [0.3003(mmf’| 20 cm |0.3001 (mmJ'|10.47 mm
Gas-lens 1.0 0.447 m! 3 Km 04470 m 6 Km [0.4470 m™ [ 7.028 m
TABLE II1
NuMeriCAL ExampLEs FOR THE DESIGN METHOD UTILIZING, CIRCULAR BENDS OF TAPERED LENSLIKE MEDIA AS MODE
TRANSDUCERS
Circularly bent Circular bent sections OA and BC
Type of Straight section section AB ( Mode transducer sections )
lens-like Ay . N
on-axis focusing radius of | focusing radius of | length of constants of taper
medium permittivity | parameter | curvature parameter | curvature| mode
* transducer
£.(0) gs R, Ge R Iy a Gor
-3
3 (mmy" | 10 mm | 3.3 (mmf' |21.52mm | 1.031 mm |-1.050%10 3048
SELFOC 25 3 (mm}’ 10 mm | 3.03 (mmf’ |2013 mm |1 050mm | 5.278 x10° 30?1 5
mm
03(mmJ' | 10 cm | 03 (mmf'{1998cm |1050cm |5552x13° 03001
(mm]
Gas ~lens 10 0.477 m™ 3 km 0-477 it 6 km |7.028 m |2780%x107| 04470 rit
TABLE IV
NUMERICAL EXAMPLES FOR THE DESIGN METHOD UTILIZING LINEARLY TAPERED BENDS OF LENSLIKE MEDIA AS MODE
TRANSDUCERS
e e
s
'Circulurly bent Circularly bent sections OA and BC
St ht ect
Type of rarght section section AB (Mode transducer sections)
lens-like
on -axis focusing radius of | focusing focusing length of mode
i
meeium permittivity parameter curvature parameter parameter transducer
o g5 Re e g ly
3 (mmJ’ 10 mm 3 (mm)' 3 (mmi' 2.094 mm
SELFOC 25
0.3 (mm)’ 10 cm 0.3 (mm)'| 0.3 (mm}' 20.94 mm
Gas-lens 10 0447 m' 3 km 0 447 m 0-447 m 14 056 m

proposed to taper the radius of curvature R without dis-
placing the center axis, as shown in Fig. C; of that table.
These methods were devised to eliminate the undulation of
the beam trajectory without considering the fluctuations of
the spot size. On the other hand, Imai and Matsumoto [20]
proposed not only to displace the center axis at the bend by 6,
as shown in Fig. A of Table V, in order to eliminate the
undulation of the beam trajectory, but also properly to alter
the distribution of the permittivity at the bend, as shown in
Fig. B of that table, in order to eliminate the fluctuation of
the spot size.

Table V compares the aforementioned design methods,
including the authors’ methods proposed in the preceding

section, with several conventional design methods for a
circular bend of the TE,; circular waveguide [13]-{19].
It is interesting to note the following correspondences. The
method of Unger [5] or Suematsu and Fukinuki [9] for
eliminating the undulations of the beam trajectory cor-
responds to the method proposed by Kumagai and Yoshida
[17], [18] to eliminate coupling from the TE,, to the TE,,
modes, as shown in Fig. A’ of Table V. The method of Imai
and Matsumoto [20] or Suematsu and Fukinuki [9] for
eliminating the fluctuations of the spot size (Fig. B) cor-
responds to the method proposed by Morgan [16] to
eliminate coupling from the TE,,; to the TM;, modes as
shown in Fig. B’. On the other hand, the method of the
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TABLE V

TEo; WAVEGUIDE

OPTICAL WAVEGUIDE CONSISTING OF
CIRCULAR TEyn WAVEGUIDE
A LENS-~LIKE MEDIUM
— | —— S
m— )
| I | )
a 8
o B R
X o
o o R
1 . .
E _g Flg A 0 F:g-A
T w .
) Fluctuation of the beam trajectory Coupling to TE;, modes can be
can be elimnated (5], 9], eliminated  (17), (18] .
c On-axis permittivity E(R) Permittivity distribution
o
s or focusing parameter & is varied according
-3
E g is varied (9],{20). 0 to (16) , (17 as
- G r
® &= e(R (1-g¥(r-r}) Y &9 = £, (1-4F cosg)
73 ’
.E bt Fxg- B Fig- B
=73
s 0 Ftuctuation of spot size can be Coupiing to TM,; modes can be
& eliminated | eliminated .
1 curvature
4@
-]
5 1
§ (o] z ’ﬁ(2)1 curvature
- Fig Ci /_=§\
"2 ¢ s
L 1
o curvature ! " ]
3 0 1
- 1 T o
g R 5 iy o LhJ z
3
o
-
[+] >
0 ’
. -l L d 2 Fig.C
=}
o Fig . Cz
&
Fluctuation of the beam trajectory Coupling to TE,, modes can be
can be eliminated (5], [this paper], eliminated {1§]
]
£ Mode Transducer
2§
e T: curvature Circular Bend
v @ Ve
B »
g E R. Mode
g ! l Transducer
[E R |
o
° n-h-L—lg ey ,IZ
@ ’
& 7T Hg, D Fig- D
§ € | All fluctuations can be eliminated Coupling to all of unwanted modes
(12) , [this paper). can be eliminated [18) .

same authors [9], [20] for eliminating both the undulation
of the beam trajectory and the fluctuation of the spot size
- by the combined use of the schemes of Figs. A and B
corresponds to the method proposed by Kumagai and
Yoshida [17], [18] to eliminate both the coupling between
TEy; and TE,, and that between TE,; and TM,; by the
combined use of the schemes of Figs. A’ and B’. Also, the
method of Unger [5] as shown in Fig. C, or that proposed

in this paper as shown in Fig. C, for eliminating the un-
dulation of the beam trajectory corresponds to the method
proposed by Unger [15], as shown in Fig. C’, to eliminate
coupling between TE,, and TE,, modes. Finally, the
methods of (72) and (77) proposed in this paper for the
simultaneous elimination of the undulations of the beam
trajectory and the spot size (Fig. D) correspond to the
method of Miller [19] (Fig. D): the input beam in the
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former or the input TE,, mode in the latter is converted by
way of the section 0?4_\ into the normal modes of the
circularly bent section AB.

From these results we find that the methods for
eliminating the undulations of the beam trajectory in the
optical waveguide with a square-law lenslike medium
correspond to those for preventing the mode conversion
from TE,, to TE;, modes at a circular bend of the circular
TE,, waveguide, while the methods for eliminating the
fluctuations of the spot size in the former correspond to
those for preventing the mode conversion from TE,, to
TM, ; modes in the latter.

VI. CoNcLusioN

Propagation behavior of light beams along curved lens-
like media has been analyzed with the help of the con-
venient method of analysis based on the approximate wave
theory. The sinusoidal and serpentine bends as well as the
circular bend and linearly tapered bend of the optical
waveguides with a square-law lenslike medium have been
investigated in detail theoretically and numerically, and the
results have been compared with the previous results by the
ray theory. A new design method of the circular bend of the
optical waveguide has been proposed, by which the effects
of the circular bend can be completely removed without off-
setting and tilting the center axis of the bend, unlike the
previous methods, and the numerical examples have been
presented. Further, we have shown the analogies between
the optical wavegulde with a square-law lenslike medium
and the circular TE,, waveguide for the cases of sinusoidal
bends, serpentine bends, and circular bends. These analogies
are attributable to the multimode characteristic of any
transmission system. Therefore, the analogies shown in this
paper are not restricted to the particular waveguides
studied in the present paper, but they exist, in general,
among various multimode transmission systems. The
analogies may be utilized to explain the characteristics of
one system or to design one system from the known facts
about the other system. This may necessitate treating the
transmission system on the basis of the wave theory or to
study the behavior of the electromagnetic wave in terms of
wave modes. From this point of view, we have treated the
optical waveguide consisting of a square-law lenslike medium
as a multimode transmission system, and have discussed
the characteristics of this waveguide in comparison with
those of the circular TE,, waveguide, one of the most
thoroughly studied multimode transmission systems.
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